题目内容
设数列{an}是首项a1=1的等比数列,若{
}是等差数列,则(
+
)+(
+
)+…+(
+
)的值为 .
| 1 |
| 2an+an+1 |
| 1 |
| 2a1 |
| 1 |
| a2 |
| 1 |
| 2a2 |
| 1 |
| a3 |
| 1 |
| 2a2012 |
| 1 |
| a2013 |
考点:等差数列的性质
专题:等差数列与等比数列
分析:由已知条件推导出2an+an+1=3,由此能求出(
+
)+(
+
)+…+(
+
)的值.
| 1 |
| 2a1 |
| 1 |
| a2 |
| 1 |
| 2a2 |
| 1 |
| a3 |
| 1 |
| 2a2012 |
| 1 |
| a2013 |
解答:
解:设等比数列{an}的公比为q,a1=1,
∴an=qn-1,
∴
=
,
∵{
}是等差数列,
∴2×
=
+
,
整理,得q2-2q+1=0,解得q=1,
∴an=1n-1=1,
∴2an+an+1=3,
∴(
+
)+(
+
)+…+(
+
)
=
=
×2012
=3018.
故答案为:3018.
∴an=qn-1,
∴
| 1 |
| 2an+an+1 |
| 1 |
| 2qn-1+qn |
∵{
| 1 |
| 2an+an+1 |
∴2×
| 1 |
| 2q2-1+q2 |
| 1 |
| 2q1-1+q |
| 1 |
| 2q3-1+q3 |
整理,得q2-2q+1=0,解得q=1,
∴an=1n-1=1,
∴2an+an+1=3,
∴(
| 1 |
| 2a1 |
| 1 |
| a2 |
| 1 |
| 2a2 |
| 1 |
| a3 |
| 1 |
| 2a2012 |
| 1 |
| a2013 |
=
| ||||||||||
| 2012个 |
=
| 3 |
| 2 |
=3018.
故答案为:3018.
点评:本题考查等差数列的前n项和的求法,是中档题,解题时要认真审题,注意等比数列的性质的灵活运用.
练习册系列答案
相关题目