题目内容

若不等式ax2+2x+c>0和(2x-1)(3x+1)<0有相同的解集,则不等式2x-cx2-a>0的解集是(  )
A、(-2,3)
B、(3,+∞)∪(-∞,-2)
C、(
1
3
,+∞)∪(-∞,-
1
2
D、(-
1
2
1
3
考点:一元二次不等式的解法
专题:不等式的解法及应用
分析:由(2x-1)(3x+1)<0解得-
1
3
<x<
1
2
.由于不等式ax2+2x+c>0和(2x-1)(3x+1)<0有相同的解集,可得不等式ax2+2x+c>0的解集为{x|-
1
3
<x<
1
2
},于是-
1
3
1
2
是方程ax2+2x+c=0的实数根,且a<0,利用根与系数的关系和一元二次不等式的解法即可得出.
解答: 解:由(2x-1)(3x+1)<0解得-
1
3
<x<
1
2

∵不等式ax2+2x+c>0和(2x-1)(3x+1)<0有相同的解集,
∴不等式ax2+2x+c>0的解集为{x|-
1
3
<x<
1
2
},
-
1
3
1
2
是方程ax2+2x+c=0的实数根,且a<0,
-
1
3
+
1
2
=-
2
a
-
1
3
×
1
2
=
c
a
,解得a=-12,c=2.
∴不等式2x-cx2-a>0化为2x-2x2+12>0,即x2-x-6<0.
解得-2<x<3.
∴不等式2x-cx2-a>0的解集是(-2,3).
故选:A.
点评:本题考查了“三个二次”之间的关系,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网