题目内容

6.过双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右顶点A作斜率为-1的直线,该直线与E的渐近线交于B,C两点,若$\overrightarrow{BC}+2\overrightarrow{BA}$=$\overrightarrow 0$,则双曲线E的渐近线方程为(  )
A.y=±$\sqrt{3}$xB.y=±4xC.y=±$\sqrt{2}$xD.y=±2x

分析 分别表示出直线l和两个渐近线的交点,利用$\overrightarrow{BC}+2\overrightarrow{BA}$=$\overrightarrow 0$,$\overrightarrow{AC}$=3$\overrightarrow{AB}$,求得a和b的关系,可得双曲线E的渐近线方程.

解答 解:直线l:y=-x+a与渐近线l1:bx-ay=0交于B($\frac{{a}^{2}}{a+b}$,$\frac{ab}{a+b}$),
l与渐近线l2:bx+ay=0交于C($\frac{{a}^{2}}{a-b}$,-$\frac{ab}{a-b}$),A(a,0),
∵$\overrightarrow{BC}+2\overrightarrow{BA}$=$\overrightarrow 0$,∴$\overrightarrow{AC}$=3$\overrightarrow{AB}$
∴$\frac{{a}^{2}}{a-b}$-a=3($\frac{{a}^{2}}{a+b}$-a),
∴b=2a,
∴双曲线E的渐近线方程为y=±2x.
故选:D.

点评 本题主要考查了直线与圆锥曲线的综合问题.要求学生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网