题目内容

6.由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到的回归直线方程为$\widehat{y}$=$\widehat{b}$ x+$\widehat{a}$,下列四个命题中正确的个数有(  )
(1)直线$\widehat{y}$=$\widehat{b}$ x+$\widehat{a}$必经过点($\overline{x}$,$\overline{y}$)
(2)直线$\widehat{y}$=$\widehat{b}$ x+$\widehat{a}$至少经过点(x1,y1),(x2,y2),…,(xn,yn)中的一个点
(3)直线$\widehat{y}$=$\widehat{b}$ x+$\widehat{a}$,的斜率为$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$
(4)直线$\widehat{y}$=$\widehat{b}$ x+$\widehat{a}$,和各点(x1,y1),(x2,y2),…,(xn,yn)的偏差$\sum_{i=1}^{n}$[yi-(bxi+a)]2是该坐标平面上所有直线与这些点的偏差中最小的.
A.1个B.2个C.3个D.4个

分析 根据最小二乘法原理和回归系数公式进行判断.

解答 解:由回归系数公式$\stackrel{∧}{a}$=$\overline{y}-\stackrel{∧}{b}\overline{x}$可知(1)正确;由回归系数公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$可知(3)正确;
由最小二乘法原理可知(4)正确,(2)不正确.
故选:C.

点评 本题考查了最小二乘法求回归方程原理,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网