题目内容
10.已知等比数列{an}的各项都为正数,其前n项和为S,且S3=42,16a2•a6=a3•a7.(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{(lo{g}_{2}{a}_{n})•(lo{g}_{2}{a}_{n+1})}$,数列{bn}的前n项和为Tn,求证:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.
分析 (1)设等比数列{an}的公比为q(q>0),由已知列式求得首项和公比,代入等比数列的通项公式得答案;
(2)把(1)中求得的数列{an}的通项公式代入bn=$\frac{1}{(lo{g}_{2}{a}_{n})•(lo{g}_{2}{a}_{n+1})}$,由Tn≥T1证明不等式左边,再由裂项相消法证明右边.
解答 (1)解:设等比数列{an}的公比为q(q>0),
由S3=42,16a2•a6=a3•a7,得
$\left\{\begin{array}{l}{{a}_{1}(1+q+{q}^{2})=42}\\{16{{a}_{1}}^{2}{q}^{6}={{a}_{1}}^{2}{q}^{8}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{q=4}\end{array}\right.$.
∴${a}_{n}=2•{4}^{n-1}={2}^{2n-1}$;
(2)证明:bn=$\frac{1}{(lo{g}_{2}{a}_{n})•(lo{g}_{2}{a}_{n+1})}$
=$\frac{1}{(lo{g}_{2}{2}^{2n-1})•(lo{g}_{2}{2}^{2n+1})}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∵数列{$\frac{1}{(2n-1)(2n+1)}$}的各项均为正数,
∴Tn≥${T}_{1}=\frac{1}{3}$;
Tn=b1+b2+…+bn=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$=$\frac{1}{2}-\frac{1}{2(2n+1)}<\frac{1}{2}$.
∴$\frac{1}{3}$≤Tn<$\frac{1}{2}$.
点评 本题考查等比数列的通项公式,考查了裂项相消法求数列的前n项和,是中档题.
①若“命题p∧q为真”,则“命题p∨q为真”;
②命题“?x>0,x-lnx>0”的否定是“?x>0,x-lnx≤0”;
②“tanx>0”是“sin2x>0”的充要条件;
④计算:9192除以100的余数是1.
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
| A. | -24 | B. | 24 | C. | -24$\sqrt{3}$ | D. | 24$\sqrt{3}$ |