题目内容
2.6本不同的书,按下列要求各有多少种不同的方法:(1)分给甲、乙、丙三人,每人两本;
(2)分为三份,每份两本.
分析 (1)把6本书平均分给甲、乙、丙3个人,每人2本,分3步进行,先从6本书中取出2本给甲,再从剩下的4本书中取出2本给乙,最后把剩下的2本书给丙,分别求出其情况数目,进而由分步计数原理,可得结论;
(2)平均分成三份,每份2本.这是平均分组问题,列举(AB,CD,EF),(AB,EF,CD)、(CD,AB,EF)、(CD,EF,AB)、(EF,CD,AB)、(EF,AB,CD)是一种分法,求出组合总数除以A33即可.
解答 解:(1)把6本书平均分给甲、乙、丙3个人,每人2本,分3步进行,
先从6本书中取出2本给甲,有C62种取法,
再从剩下的4本书中取出2本给乙,有C42种取法,
最后把剩下的2本书给丙,有1种情况,
则把6本书平均分给甲、乙、丙3个人,每人2本,有C62×C42×1=90种分法;
(2)无序均匀分组问题.先分三步,则应是C26C24C22种方法,但是这里出现了重复.不妨记6本书为A、B、C、D、E、F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则C26C24C22种分法中还有(AB,EF,CD)、(CD,AB,EF)、(CD,EF,AB)、(EF,CD,AB)、(EF,AB,CD),共A33种情况,而这A33种情况仅是AB、CD、EF的顺序不同,因此只能作为一种分法,故分配方式有(C26C24C22)÷A33=15种.
点评 本题考查排列、组合及简单计数问题,正确区分无序不均匀分组问题.有序不均匀分组问题.无序均匀分组问题.是解好组合问题的一部分;本题考查计算能力,理解能力.
练习册系列答案
相关题目
12.在△ABC中,设$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,点D在BC边上且$\overrightarrow{AD}$=λ($\frac{c}{|c|sinB}+\frac{b}{|b|sinC}$)(λ∈R),则( )
| A. | $\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$+$\overrightarrow{b}$ | B. | $\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$+$\frac{1}{2}$$\overrightarrow{b}$ | C. | $\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$-$\frac{1}{2}$$\overrightarrow{b}$ | D. | $\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$-$\overrightarrow{b}$ |
13.某协会举办行业知识测试,为更好地了解从业人员对行业知识掌握程度的分布情况,从参加测试的人中随机抽取100人,对他们的行业测试成绩进行统计,得到如下频数分布表:
依此数据,估计这次行业知识测试的平均成绩$\overline{x}$和方差s2.
| 成绩 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 人数 | 10 | 20 | 35 | 30 | 5 |
17.已知A={y|y=$\sqrt{l{n}^{2}x-2lnx+3}$,x≥1},B={x||lnx|≥1},则A∩B=( )
| A. | ($\sqrt{2}$,+∞) | B. | (1,$\frac{1}{e}$) | C. | [e,+∞) | D. | (e,+∞) |
14.已知sin(α一β)=$\frac{3}{5}$,cos(α+β)=-$\frac{3}{5}$,且α-β∈($\frac{π}{2}$,π),α+β∈($\frac{π}{2}$,π),则cos2β的值为( )
| A. | 1 | B. | -1 | C. | $\frac{24}{25}$ | D. | -$\frac{4}{5}$ |