题目内容
若a>b>0,则代数式a2+的最小值为( )
(A)2 (B)3 (C)4 (D)5
C
在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点.若点P,A之间的最短距离为2,则满足条件的实数a的所有值为 .
如图所示,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
设a+b=2,b>0,则+的最小值为 .
设a,b∈R,若x≥0时恒有0≤x4-x3+ax+b≤(x2-1)2,则ab= .
若直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值为( )
(A) (B)
(C)+ (D) +2
如图,在圆内接梯形ABCD中,AB∥DC.过点A作圆的切线与CB的延长线交于点E.若AB=AD=5,BE=4,则弦BD的长为 .
如图所示,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为圆I与边CA的切点.
(1)求证A,I,H,E四点共圆;
(2)若∠C=50°,求∠IEH的度数.
已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=( )
(A) (B) (C) (D)