题目内容

已知
a
=(
1
k
,2),
b
=(-1,
1
x
),f(x)=
a
b
(其中k为非零常数).
(1)解关于x的不等式f(x)>0;
(2)若f(x)+2x≥0在(0,+∞)上恒成立,求k的范围.
(1)f(x)=
a
b
=
2
x
-
1
k

则f(x)>0,即
2
x
-
1
k
>0
,即
x-2k
xk
<0

①如果k>0,则原不等式等价于x(x-2k)<0,
∴0<x<2k.
②如果k<0,则原不等式等价于x(x-2k)<0,
∴x>0或x<2k.
综上所述,当k>0时,原不等式的解集为{x|0<x<2k}.
当k<0时,原不等式的解集为{x|0<x或x<2k}.
(2)若f(x)+2x≥0在(0,+∞)上恒成立,
2
x
+2x-
1
k
≥0
在(0,+∞)上恒成立,
2
x
+2x≥
1
k
,在(0,+∞)上恒成立,
令g(x)=
2
x
+2x
,∵x>0,
∴g(x)≥2×2=4,当且仅当x=1时取等号,
1
k
≤4
,解得k<0或k
1
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网