题目内容

5.△ABC中,角A、B、C所对的边分别为a、b、c,a>b且sin2B+sin2C=tan$\frac{A}{2}$(cos2B+cos2C).
(I)求角A的大小;
(Ⅱ)若a=4,求b+c的取值范围.

分析 (Ⅰ)通过和差化积公式,三角函数恒等变换的应用化简得tan$\frac{A}{2}$=$\sqrt{3}$,利用正切函数的图象和性质求出A的值.
(Ⅱ)通过余弦定理以及基本不等式求出b+c的范围,再利用三角形三边的关系求出b+c的范围.

解答 解:(I)∵sin2B+sin2C=tan$\frac{A}{2}$(cos2B+cos2C).
∴2sin(B+C)cos(B-C)=2tan$\frac{A}{2}$cos(B+C)cos(B-C),
∴sinAcos(B-C)=-tan$\frac{A}{2}$cosAcos(B-C),
∴可得:sinA=-tan$\frac{A}{2}$cosA,
∴可得:tanA=$\frac{2tan\frac{A}{2}}{1-ta{n}^{2}\frac{A}{2}}$=-tan$\frac{A}{2}$,解得:tan$\frac{A}{2}$=$\sqrt{3}$,
∴由$\frac{A}{2}$∈(0,$\frac{π}{2}$)解得:A=$\frac{2π}{3}$.
(Ⅱ)由余弦定理得,a2=b2+c2-2bccosA,
则16=b2+c2+bc,
∴(b+c)2-bc=16,
即bc=(b+c)2-16≤[$\frac{1}{2}$(b+c)]2,
化简得,(b+c)2≤$\frac{64}{3}$(当且仅当b=c时取等号),
则b+c≤$\frac{8\sqrt{3}}{3}$,又b+c>a=4,
综上得,b+c的取值范围是(4,$\frac{8\sqrt{3}}{3}$].

点评 本题考查余弦定理的应用,和差化积公式,三角函数恒等变换的应用以及基本不等式求最值,考查分析问题、解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网