题目内容
| AE |
| α |
| AF |
| β |
(1)试用
| α |
| β |
| AB |
| AD |
(2)求向量
| α |
| β |
考点:平面向量数量积的运算,向量加减混合运算及其几何意义
专题:平面向量及应用
分析:(1)由E、F分别为边BC、CD中点,
=
,
=
.利用向量的三角形法则和向量相等可得
+
=
,
+
=
.联立解得即可.
(2)已知|
|=|
|=a,
•
=0.由(1)利用向量的数量积性质和模的计算公式可得
•
=a2.|
|=
=
a,同理可得|
|=
a2.再利用向量的夹角公式即可得出.
| AE |
| α |
| AF |
| β |
| AB |
| 1 |
| 2 |
| AD |
| α |
| AD |
| 1 |
| 2 |
| AB |
| β |
(2)已知|
| AB |
| AD |
| AB |
| AD |
| α |
| β |
| α |
|
| ||
| 2 |
| β |
| ||
| 2 |
解答:
解:(1)∵E、F分别为边BC、CD中点,
=
,
=
.
∴
=
+
=
+
=
+
=
,
=
+
=
+
=
+
=
.
解得
=
-
,
=
-
.
(2)|
|=|
|=a,
•
=0.
∴
•
=(
+
)•(
+
)=
2+
2+0=a2.
|
|=
=
=
a,同理可得|
|=
a2.
∴cos<
,
>=
=
=
.
∴向量
、
夹角为arccos
.
| AE |
| α |
| AF |
| β |
∴
| AE |
| AB |
| BE |
| AB |
| 1 |
| 2 |
| BC |
| AB |
| 1 |
| 2 |
| AD |
| α |
| AF |
| AD |
| DF |
| AD |
| 1 |
| 2 |
| DC |
| AD |
| 1 |
| 2 |
| AB |
| β |
解得
| AB |
| 4 |
| 3 |
| α |
| 2 |
| 3 |
| β |
| AD |
| 4 |
| 3 |
| β |
| 2 |
| 3 |
| α |
(2)|
| AB |
| AD |
| AB |
| AD |
∴
| α |
| β |
| AB |
| 1 |
| 2 |
| AD |
| 1 |
| 2 |
| AB |
| AD |
| 1 |
| 2 |
| AB |
| 1 |
| 2 |
| AD |
|
| α |
|
a2+
|
| ||
| 2 |
| β |
| ||
| 2 |
∴cos<
| α |
| β |
| ||||
|
|
| a2 | ||
|
| 4 |
| 5 |
∴向量
| α |
| β |
| 4 |
| 5 |
点评:本题考查了向量的三角形法则、数量积的运算性质、向量的夹角公式,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目