题目内容
8.已知实数x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{4x-y-4≤0}\\{\;}\end{array}\right.$,则当3x-y取得最小值时,$\frac{x-5}{y+3}$的值为( )| A. | -$\frac{2}{3}$ | B. | $\frac{2}{3}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
分析 先画出满足条件的平面区域,求出2x-y取得最小值时A点的坐标,将A点的坐标代入$\frac{x-5}{y+3}$,求解即可.
解答 解:满足条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{4x-y-4≤0}\\{\;}\end{array}\right.$的平面区域,如图,
令z=3x-y,![]()
则当直线z=3x-y经过直线x-y+2=0和直线
x+y-4=0的交点A时,z取得最小值.
此时A的坐标为(1,3),
∴$\frac{x-5}{y+3}$=$-\frac{2}{3}$
故选:A.
点评 本题考察了简单的线性规划问题,考察数形结合思想,求出2x-y取得最小值时的x,y的值是解题的关键,本题是一道中档题.
练习册系列答案
相关题目
1.某银行在我市举行了“网上银行、手机银行办理业务免费政策”满意度测评,共有10000人参加了这次测评(满分100分,得分全为整数),为了解本次测评分数情况,从中随机抽取了部分人的测评分数进行统计,整理见如表:
(1)求出表中a,b,c的值;
(2)若分数字80(含80分)以上表示对“网上银行、手机银行办理业务免费政策”非常满意,其中分数在90(含有90分)以上表示“十分满意”,现从被抽取的“”非常满意人群中随机抽取2人,求至少一人分数是“十分满意”的概率;
(3)请你根据样本数据估计全市的平均测评分数.
| 组别 | 分组 | 频数 | 频率 |
| 1 | [50,60) | a | 0.08 |
| 2 | [60,70) | 15 | 0.3 |
| 3 | [70,80) | 21 | c |
| 4 | [80,90) | 6 | 0.12 |
| 5 | [90,100) | 4 | 0.08 |
| 合计 | b | 1.00 | |
(2)若分数字80(含80分)以上表示对“网上银行、手机银行办理业务免费政策”非常满意,其中分数在90(含有90分)以上表示“十分满意”,现从被抽取的“”非常满意人群中随机抽取2人,求至少一人分数是“十分满意”的概率;
(3)请你根据样本数据估计全市的平均测评分数.
2.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则符合条件$|\begin{array}{l}{z}&{1+i}\\{2}&{1}\end{array}|$=0的复数z对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |