题目内容


如图11-19,在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=,M、N分别为AB、SB的中点

(1)证明:AC⊥SB;

(2)求二面角N-CM-B的大小。

(3)求点B到平面CMN的距离。


取AC中点O,连续OS、OB,∵SA=SC,AB=BC,∴AC⊥SO,AC⊥OB,又平面SAC⊥平面ABC,SO⊥AC,

∴SO⊥平面ABC,∴SO⊥BO。以OA、OB、OC分别为x轴、y轴、z轴建立空间直角坐标系如下图。

(3)由(1)、(2)得为平面CMN的一个法向量。

∴点B到平面CMN的距离d=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网