题目内容

8.已知sinx+cosx=$\frac{1}{5}$(0≤x<π),则tanx的值等于(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

分析 先根据sinx+cosx的值和二者的平方关系联立求得cosx的值,进而根据同角三角函数的基本关系求得sinx的值,最后利用商数关系求得tanx的值.

解答 解:由sinx+cosx=$\frac{1}{5}$,得sinx=$\frac{1}{5}$-cosx,代入sin2x+cos2x=1,
得:(5cosx-4)(5cosx+3)=0,
∴cosx=$\frac{4}{5}$或cosx=-$\frac{3}{5}$,当cosx=$\frac{4}{5}$时,得sinx=-$\frac{3}{5}$,
又∵0≤x<π,
∴sinx≥0,故这组解舍去;
∴当cosx=-$\frac{3}{5}$时,sinx=$\frac{4}{5}$,tanx=-$\frac{4}{3}$.
故选:B.

点评 本题主要考查了同角三角函数的基本关系的应用.解题的过程中要特别注意根据角的范围确定三角函数值的正负号,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网