题目内容

6.函数f(x)=$\sqrt{x+3}+{log_2}({9-x})$的定义域是(  )
A.{x|x>9}B.{x|-3<x<9}C.{x|x>-3}D.{x|-3≤x<9}

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则$\left\{\begin{array}{l}{x+3≥0}\\{9-x>0}\end{array}\right.$,
得$\left\{\begin{array}{l}{x≥-3}\\{x<9}\end{array}\right.$,得-3≤x<9,
即函数的定义域为{x|-3≤x<9},
故选:D

点评 本题主要考查函数定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网