题目内容

11.已知函数f(x)=x+$\frac{a}{x}$-3lnx(a∈R).
(1)若x=3是f(x)的一个极值点,求a值及f(x)的单调区间;
(2)当a=-2时,求f(x)在区间[1,e]上的最值.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)根据函数的单调性求出f(x)的最小值,计算f(e),f(1)的大小,求出f(x)的最大值即可.

解答 解:函数f(x)的定义域为(0,+∞),
(1)由题有f′(x)=1-$\frac{a}{{x}^{2}}$-$\frac{3}{x}$,
所以由x=3是函数f(x)的一个极值点得f′(3)=1-$\frac{a}{9}$-1=0,解得:a=0,
此时f′(x)=1-$\frac{3}{x}$=$\frac{x-3}{x}$,
所以,当x>3时,f′(x)>0;当0<x<3时,f′(x)<0,
即函数f(x)在(3,+∞)单调递增;在(0,3)单调递减.
所以函数f(x)的单调递增区间为(3,+∞),单调递减区间为(0,3);
(2)因为a=-2,所以f(x)=x-$\frac{2}{x}$-3lnx,
f′(x)=1+$\frac{2}{{x}^{2}}$-$\frac{3}{x}$=$\frac{(x-1)(x-2)}{{x}^{2}}$,
所以,当0<x<1或x>2时,f′(x)>0;当1<x<2时,f′(x)<0,
所以函数f(x)的单调递增区间为(0,1)和(2,+∞);单调递减区间为(1,2),
又x∈[1,e],所以f(x)在[1,2]递减,在[2,e]递增,
所以f(x)的最小值f(x)min=f(2)=1-3ln2,
又f(1)=-1,f(e)=e-$\frac{2}{e}$-3及f(e)-f(1)=e-$\frac{2}{e}$-2<2.72-$\frac{2}{2.72}$-2=$\frac{1.9584-2}{2.72}$<0,
所以f(x)的最大值为f(x)max=f(1)=-1.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网