ÌâÄ¿ÄÚÈÝ

6£®£¨1£©º¯Êýf£¨x£©=sinx•cos$\frac{x}{2}$£¬g£¨x£©=cosx•sin$\frac{x}{2}$£¬ÄÇô[$\frac{¦Ð}{2}$£¬$\frac{3}{4}¦Ð$]ÊǺ¯Êýf£¨x£©-g£¨x£©µÄÒ»¸öµ¥µ÷¼õÇø¼ä£»
£¨2£©¶ÔÓÚf£¨x£©=sinx£¬Èô¦ÁΪµÚÒ»ÏóÏ޽ǣ¬Ôòf£¨¦Á£©+f£¨$\frac{¦Ð}{2}$-¦Á£©£¾1£»
£¨3£©ÇúÏßy=cos£¨2x-$\frac{¦Ð}{6}$£©µÄÒ»Ìõ¶Ô³ÆÖá·½³ÌÊÇx=-$\frac{2}{3}$¦Ð£»
£¨4£©º¯Êýy=sin4x+cos2xµÄ×îСÕýÖÜÆÚÊǦУ»
£¨5£©º¯Êýy=tan£¨$\frac{x}{2}$-$\frac{¦Ð}{3}$£©Í¼ÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ£¨$\frac{5}{3}$¦Ð£¬0£©£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ£¨2£©£¨4£©£¨5£©£®£¨½«ÄãÈÏΪÕýÈ·µÄ¶¼ÌîÉÏ£©

·ÖÎö »¯¼òº¯Êý½âÎöʽ£¬ÀûÓÃÈý½Çº¯ÊýµÄÐÔÖÊÅжϣ®

½â´ð ½â£º£¨1£©f£¨x£©-g£¨x£©=2sin$\frac{x}{2}$cos2$\frac{x}{2}$-£¨cos2$\frac{x}{2}$-sin2$\frac{x}{2}$£©sin$\frac{x}{2}$=cos2$\frac{x}{2}$sin$\frac{x}{2}$+sin3$\frac{x}{2}$=sin$\frac{x}{2}$£®
µ±x¡Ê[$\frac{¦Ð}{2}$£¬$\frac{3}{4}¦Ð$]ʱ£¬$\frac{x}{2}$¡Ê[$\frac{¦Ð}{4}$£¬$\frac{3¦Ð}{8}$]⊆[0£¬$\frac{¦Ð}{2}$]£¬
¡àf£¨x£©-g£¨x£©ÔÚ[$\frac{¦Ð}{2}$£¬$\frac{3}{4}¦Ð$]Éϵ¥µ÷µÝÔö£¬¹Ê£¨1£©´íÎó£®
£¨2£©f£¨¦Á£©+f£¨$\frac{¦Ð}{2}-¦Á$£©=sin¦Á+cos¦Á=$\sqrt{2}$sin£¨$¦Á+\frac{¦Ð}{4}$£©£®
µ±¦ÁÊǵÚÒ»ÏóÏÞ½Çʱ£¬2k¦Ð$£¼¦Á£¼\frac{¦Ð}{2}+2k¦Ð$£¬¡à$\frac{¦Ð}{4}+2k¦Ð£¼$$¦Á+\frac{¦Ð}{4}$£¼$\frac{3¦Ð}{4}+2k¦Ð$£®
¡à$\frac{\sqrt{2}}{2}£¼$sin£¨$¦Á+\frac{¦Ð}{4}$£©¡Ü1£®¡à1£¼$\sqrt{2}$sin£¨$¦Á+\frac{¦Ð}{4}$£©$¡Ü\sqrt{2}$£®¹Ê£¨2£©ÕýÈ·£®
£¨3£©µ±x=-$\frac{2¦Ð}{3}$ʱcos£¨2x-$\frac{¦Ð}{6}$£©=cos$\frac{3¦Ð}{2}$=0£¬
¡àf£¨x£©=cos£¨2x-$\frac{¦Ð}{6}$£©²»¹ØÓÚÖ±Ïßx=-$\frac{2¦Ð}{3}$¶Ô³Æ£¬¹Ê£¨3£©´íÎó£®
£¨4£©º¯Êýy=sin4x+cos2x=sin4x-sin2x+1£¬Áît=sin2x£¬Ôòy=t2-t+1£®
¡ßt=sin2xµÄ×îСÕýÖÜÆÚÊǦУ¬¡ày=sin4x+cos2xµÄÖÜÆÚΪ¦Ð£¬¹Ê£¨4£©ÕýÈ·£®
£¨5£©µ±x=$\frac{5¦Ð}{3}$ʱ£¬$\frac{x}{2}$-$\frac{¦Ð}{3}$=$\frac{¦Ð}{2}$£¬£¨$\frac{5}{3}$¦Ð£¬0£©ÊÇy=tan£¨$\frac{x}{2}$-$\frac{¦Ð}{3}$£©Í¼ÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄ£¬¹Ê£¨5£©ÕýÈ·£®
¹Ê´ð°¸Îª£¨2£©£¨4£©£¨5£©£®

µãÆÀ ±¾Ì⿼²éÁËÈý½Çº¯ÊýµÄºãµÈ±ä»»£¬Èý½Çº¯ÊýµÄÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø