题目内容

9.已知a,b∈R,且ex≥a(x-1)+b对x∈R恒成立,则ab的最大值是(  )
A.$\frac{1}{2}{e^3}$B.$\frac{{\sqrt{2}}}{2}{e^3}$C.$\frac{{\sqrt{3}}}{2}{e^3}$D.e3

分析 先求出函数的导数,再分别讨论a=0,a<0,a>0的情况,从而得出ab的最大值.

解答 解:令f(x)=ex-a(x-1)-b,则f′(x)=ex-a,
若a=0,则f(x)=ex-b≥-b≥0,得b≤0,此时ab=0;
若a<0,则f′(x)>0,函数单调增,x→-∞,此时f(x)→-∞,不可能恒有f(x)≥0.
若a>0,由f′(x)=ex-a=0,得极小值点x=lna,
由f(lna)=a-alna+a-b≥0,得b≤a(2-lna),
ab≤a2(2-lna).
令g(a)=a2(2-lna).
则g′(a)=2a(2-lna)-a=a(3-2lna)=0,得极大值点a=${e}^{\frac{3}{2}}$.
而g(${e}^{\frac{3}{2}}$)=$\frac{1}{2}{e}^{3}$.
∴ab的最大值是$\frac{1}{2}{e}^{3}$.
故选:A.

点评 本题考查函数恒成立问题,考查了函数的单调性,训练了导数在求最值中的应用,渗透了分类讨论思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网