题目内容

已知函数f(x)=Asin(ωx-
π
6
)(A>0,ω>0)的最大值为2,其图象相邻两条对称轴之间的距离为
π
2

(Ⅰ)求f(x)的解析式及最小正周期;
(Ⅱ)设α∈(0,
π
2
),且f(
α
2
)=1,求α的值.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的求值,三角函数的图像与性质
分析:(Ⅰ)由最大值为2可求A的值,由图象相邻两条对称轴之间的距离为
π
2
,得最小正周期T,根据周期公式即可求ω,从而得解;
(Ⅱ)由f(
α
2
)=1
sin(α-
π
6
)=
1
2
,由0<α<
π
2
,得-
π
6
<α-
π
6
π
3
,从而可解得α的值.
解答: (共13分)
解:(Ⅰ)因为函数f(x)的最大值为2,所以A=2.
由图象相邻两条对称轴之间的距离为
π
2
,得最小正周期T=π.
所以ω=2.
故函数的解析式为f(x)=2sin(2x-
π
6
)
.…(6分)
(Ⅱ)f(
α
2
)=2sin(α-
π
6
)
,由f(
α
2
)=1
sin(α-
π
6
)=
1
2

因为0<α<
π
2
,所以-
π
6
<α-
π
6
π
3

所以α-
π
6
=
π
6
,故α=
π
3
.…(13分)
点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了周期公式的应用,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网