题目内容

18.在△ABC中,若b=1,A=60°,△ABC的面积为$\sqrt{3}$,则a=(  )
A.13B.$\sqrt{13}$C.2D.$\sqrt{2}$

分析 由已知利用三角形面积公式可求c的值,进而利用余弦定理即可解得a的值.

解答 解:∵b=1,A=60°,△ABC的面积为$\sqrt{3}$=$\frac{1}{2}$×$1×c×\frac{\sqrt{3}}{2}$,
∴解得:c=4,
∴由余弦定理可得:a=$\sqrt{{b}^{2}+{c}^{2}-2bccosA}$
=$\sqrt{1+16-2×1×4×\frac{1}{2}}$=$\sqrt{13}$.
故选:B.

点评 本题主要考查了三角形面积公式,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网