题目内容
已知|
|=4,|
|=3,(2
-3
)•(2
+
)=61.
(1)求
与
的夹角θ;
(2)求|
+
|与|
-
|.
| a |
| b |
| a |
| b |
| a |
| b |
(1)求
| a |
| b |
(2)求|
| a |
| b |
| a |
| b |
分析:(1)由条件利用两个向量的数量积公式求得cosθ=-
,从而求得θ的值.
(2)根据 |
+
|=
=
,|
-
|=
=
,运算求得结果.
| 1 |
| 2 |
(2)根据 |
| a |
| b |
(
|
|
| a |
| b |
(
|
|
解答:解:(1)由(2
-3
)•(2
+
)=61,得4
2-3
2-4
•
=61,
即64-27-4×4×3cosθ=61,
求得cosθ=-
,
再由θ∈[0,π],可得θ=
π.
(2)|
+
|=
=
=
=
;
|
-
|=
=
=
=
.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
即64-27-4×4×3cosθ=61,
求得cosθ=-
| 1 |
| 2 |
再由θ∈[0,π],可得θ=
| 2 |
| 3 |
(2)|
| a |
| b |
(
|
|
16+9-2×4×3×
|
| 13 |
|
| a |
| b |
(
|
|
16+9+2×4×3×
|
| 37 |
点评:本题主要考查两个向量的数量积的定义,数量积公式的应用,求向量的模的方法,属于中档题.
练习册系列答案
相关题目