题目内容
13.已知空间几何体的三视图如图所示,则该几何体的体积是$\frac{8}{3}$.分析 由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,代入棱锥体积公式,可得答案.
解答 解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,
棱锥的底面面积S=2×2=4,
棱锥的高h=2,
故棱锥的体积V=$\frac{1}{3}Sh$=$\frac{8}{3}$;
故答案为:$\frac{8}{3}$
点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.
练习册系列答案
相关题目
4.圆O:x2+y2-2x-7=0与直线l:(λ+1)x-y+1-λ=0(λ∈R)的位置关系是( )
| A. | 相切 | B. | 相交 | C. | 相离 | D. | 不确定 |
4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1、F2,P为椭圆上一点,连接PF1交y轴于点Q,若△PQF2为等边三角形,则椭圆C的离心率为( )
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
1.已知A,B是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个顶点,若P双曲线上一点,P关于x轴对称点为Q,若直线AP,BQ的斜率分别K1,K2且K1K2=-$\frac{4}{9}$,则该双曲线的离心率为( )
| A. | $\sqrt{5}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{\sqrt{13}}{2}$ | D. | $\frac{\sqrt{13}}{3}$ |