题目内容

在△ABC中,∠B=
5
12
π,D是BC边上任意一点(D与B、C不重合),且
AC
2+
BC
2-
AD
2=
BD
DC
-2
AC
CB

,则∠A等于
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:作 AO⊥BC,垂足为 O,以 BC 所在直线为 x 轴,以 OA 所在直线为 y 轴,建立直角坐标系.设 A(0,a),B(b,0),C (c,0),D(d,0).由
AC
2+
BC
2-
AD
2=
BD
DC
-2
AC
CB
,可得
AC
2+
BC
2-2
AC
BC
=
AD
2
+
BD
DC
,化为
AB
2
=
AD
2
+
BD
DC
,化简可得b=-c,进而得出.
解答: 解:作 AO⊥BC,垂足为 O,
以 BC 所在直线为 x 轴,以 OA 所在直线为 y 轴,建立直角坐标系.
设 A(0,a),B(b,0),C (c,0),D(d,0).
AC
2+
BC
2-
AD
2=
BD
DC
-2
AC
CB

AC
2+
BC
2-2
AC
BC
=
AD
2
+
BD
DC

AB
2
=
AD
2
+
BD
DC

∴b2+a2=d2+a2+(d-b)(c-d),
即(b-d)(b+d)=(d-b)(d-c),
又b-d≠0,
∴b+d=d-c,
∴b=-c,
∴点B(b,0)和C(c,0)关于原点对称,
∴△ABC为等腰三角形.
∴AB=AC,∵∠B=
12

∴∠A=π-
5
12
π×2
=
π
6

故答案为:
π
6
点评:本题考查了向量的数量积运算性质、余弦定理、等腰三角形的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网