题目内容
17.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:| 年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| 储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
(2)用所求回归方程预测该地区2016年(t=6)的人民币储蓄存款.
附:回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$中,
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.
分析 (1)利用公式求出a,b,即可求y关于t的回归方程;
(2)t=6,代入回归方程,即可预测该地区2015年的人民币储蓄存款
解答 解:(1)由题意,这里n=5,$\overline{t}$=3,$\overline{y}$=$\frac{36}{5}$=7.2.…2‘
从而$\widehat{b}$=$\frac{120-5×3×7.2}{55-5×{3}^{2}}$=$\frac{12}{10}$=1.2,$\widehat{a}$=7.2-1.2×3=3.6,…6‘
故所求回归方程为$\widehat{y}$=1.2t+3.6.…8‘
(2)将t=6代入回归方程可预测该地区2016年的人民币储蓄存款为
$\widehat{y}$=1.2×6+3.6=10.8(千亿元).…12‘
点评 本题考查线性回归方程,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
8.焦点为(0,6),且与双曲线$\frac{{x}^{2}}{2}$-y2=1有相同的渐近线的双曲线方程是( )
| A. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{24}$=1 | B. | $\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1 | C. | $\frac{{y}^{2}}{24}$-$\frac{{x}^{2}}{12}$=1 | D. | $\frac{{x}^{2}}{24}$-$\frac{{y}^{2}}{12}$=1 |
9.在空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(1,0,2),(1,2,0),(1,2,1),(0,2,2),若正视图以yOz平面为投射面,则该四面体左(侧)视图面积为( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
2.已知圆(x+1)2+y2=2,则其圆心和半径分别为( )
| A. | (1,0),2 | B. | (-1,0),2 | C. | (1,0),$\sqrt{2}$ | D. | (-1,0),$\sqrt{2}$ |
9.若tanα=3,则${cos^2}({α+\frac{π}{4}})-{cos^2}({α-\frac{π}{4}})$=( )
| A. | $-\frac{3}{5}$ | B. | $-\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
6.已知函数f(x)=2sinx-3x,若对任意m∈[-2,2],f(ma-3)+f(a2)>0的恒成立,则a的取值范围是( )
| A. | (-1,1) | B. | (-∞,-1)∪(3,+∞) | C. | (-3,3) | D. | (-∞,-3)∪(1,+∞) |
7.已知$f(x)=sin(2017x+\frac{π}{6})+cos(2017x-\frac{π}{3})$的最大值为A,若存在实数x1,x2使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1-x2|的最小值为( )
| A. | $\frac{π}{2017}$ | B. | $\frac{2π}{2017}$ | C. | $\frac{4π}{2017}$ | D. | $\frac{π}{4034}$ |