ÌâÄ¿ÄÚÈÝ

8£®½¹µãΪ£¨0£¬6£©£¬ÇÒÓëË«ÇúÏß$\frac{{x}^{2}}{2}$-y2=1ÓÐÏàͬµÄ½¥½üÏßµÄË«ÇúÏß·½³ÌÊÇ£¨¡¡¡¡£©
A£®$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{24}$=1B£®$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1C£®$\frac{{y}^{2}}{24}$-$\frac{{x}^{2}}{12}$=1D£®$\frac{{x}^{2}}{24}$-$\frac{{y}^{2}}{12}$=1

·ÖÎö ¸ù¾ÝÌâÒ⣬ÉèÒªÇóË«ÇúÏߵķ½³ÌΪ$\frac{{x}^{2}}{2}$-y2=k£¬½áºÏ½¹µãµÄλÖÿɵÃk£¼0£¬¿ÉµÃÆä±ê×¼·½³ÌΪ£º$\frac{{y}^{2}}{-k}$-$\frac{{x}^{2}}{-2k}$=1£¬ÓÉË«ÇúÏߵļ¸ºÎÐÔÖʿɵÃc2=£¨-k£©+£¨-2k£©=36£¬½â¿ÉµÃkµÄÖµ£¬´úÈëË«ÇúÏߵıê×¼·½³Ì¼´¿ÉµÃ´ð°¸£®

½â´ð ½â£º¸ù¾ÝÌâÒ⣬ҪÇóË«ÇúÏßÓë$\frac{{x}^{2}}{2}$-y2=1ÓÐÏàͬµÄ½¥½üÏߣ¬¿ÉÒÔÉèÆä·½³ÌΪ£º$\frac{{x}^{2}}{2}$-y2=k£¬
ÓÖÓÉÆä½¹µãΪ£¨0£¬6£©£¬ÔòÆä½¹µãÔÚyÖáÉÏÇÒc=6£¬±ØÓÐk£¼0£¬
¹ÊÆä±ê×¼·½³ÌΪ£º$\frac{{y}^{2}}{-k}$-$\frac{{x}^{2}}{-2k}$=1£¬
ÔòÓÐc2=£¨-k£©+£¨-2k£©=36£¬
½â¿ÉµÃk=-12£»
¹ÊÒªÇóË«ÇúÏߵıê×¼·½³ÌΪ£º$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1£»
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éË«ÇúÏߵļ¸ºÎÐÔÖÊ£¬Éæ¼°Ë«ÇúÏߵıê×¼·½³Ì£¬¹Ø¼üÊÇÕÆÎÕ½¥½üÏßÏàͬµÄË«ÇúÏß·½³ÌµÄÉè·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø