ÌâÄ¿ÄÚÈÝ
8£®½¹µãΪ£¨0£¬6£©£¬ÇÒÓëË«ÇúÏß$\frac{{x}^{2}}{2}$-y2=1ÓÐÏàͬµÄ½¥½üÏßµÄË«ÇúÏß·½³ÌÊÇ£¨¡¡¡¡£©| A£® | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{24}$=1 | B£® | $\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1 | C£® | $\frac{{y}^{2}}{24}$-$\frac{{x}^{2}}{12}$=1 | D£® | $\frac{{x}^{2}}{24}$-$\frac{{y}^{2}}{12}$=1 |
·ÖÎö ¸ù¾ÝÌâÒ⣬ÉèÒªÇóË«ÇúÏߵķ½³ÌΪ$\frac{{x}^{2}}{2}$-y2=k£¬½áºÏ½¹µãµÄλÖÿɵÃk£¼0£¬¿ÉµÃÆä±ê×¼·½³ÌΪ£º$\frac{{y}^{2}}{-k}$-$\frac{{x}^{2}}{-2k}$=1£¬ÓÉË«ÇúÏߵļ¸ºÎÐÔÖʿɵÃc2=£¨-k£©+£¨-2k£©=36£¬½â¿ÉµÃkµÄÖµ£¬´úÈëË«ÇúÏߵıê×¼·½³Ì¼´¿ÉµÃ´ð°¸£®
½â´ð ½â£º¸ù¾ÝÌâÒ⣬ҪÇóË«ÇúÏßÓë$\frac{{x}^{2}}{2}$-y2=1ÓÐÏàͬµÄ½¥½üÏߣ¬¿ÉÒÔÉèÆä·½³ÌΪ£º$\frac{{x}^{2}}{2}$-y2=k£¬
ÓÖÓÉÆä½¹µãΪ£¨0£¬6£©£¬ÔòÆä½¹µãÔÚyÖáÉÏÇÒc=6£¬±ØÓÐk£¼0£¬
¹ÊÆä±ê×¼·½³ÌΪ£º$\frac{{y}^{2}}{-k}$-$\frac{{x}^{2}}{-2k}$=1£¬
ÔòÓÐc2=£¨-k£©+£¨-2k£©=36£¬
½â¿ÉµÃk=-12£»
¹ÊÒªÇóË«ÇúÏߵıê×¼·½³ÌΪ£º$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1£»
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éË«ÇúÏߵļ¸ºÎÐÔÖÊ£¬Éæ¼°Ë«ÇúÏߵıê×¼·½³Ì£¬¹Ø¼üÊÇÕÆÎÕ½¥½üÏßÏàͬµÄË«ÇúÏß·½³ÌµÄÉè·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®Éè{an}ÊÇÊ×Ïî´óÓÚÁãµÄµÈ±ÈÊýÁУ¬Ôò¡°a1£¼a2¡±ÊÇ¡°ÊýÁÐ{an}ÊǵÝÔöÊýÁС±µÄ£¨¡¡¡¡£©
| A£® | ³äÒªÌõ¼þ | B£® | ³ä·Ö¶ø²»±ØÒªÌõ¼þ | ||
| C£® | ±ØÒª¶ø²»³ä·ÖÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
20£®ÒÑÖªx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-y+1¡Ü0}\\{2x+y-a¡Ý0}\\{y-2¡Ü0}\end{array}\right.$£¬ÈôÄ¿±êº¯Êýz=x-2yµÄ×î´óÖµÊÇ-2£¬ÔòʵÊýa=£¨¡¡¡¡£©
| A£® | -6 | B£® | -1 | C£® | 1 | D£® | 6 |
17£®Ëæ×ÅÎÒ¹ú¾¼ÃµÄ·¢Õ¹£¬¾ÓÃñµÄ´¢Ðî´æ¿îÖðÄêÔö³¤£®ÉèijµØÇø³ÇÏç¾ÓÃñÈËÃñ±Ò´¢Ðî´æ¿î£¨Äêµ×Óà¶î£©ÈçÏÂ±í£º
£¨1£©Çóy¹ØÓÚtµÄ»Ø¹é·½³Ì$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$
£¨2£©ÓÃËùÇ󻨹鷽³ÌÔ¤²â¸ÃµØÇø2016Ä꣨t=6£©µÄÈËÃñ±Ò´¢Ðî´æ¿î£®
¸½£º»Ø¹é·½³Ì$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$ÖУ¬
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$£®
| Äê·Ý | 2011 | 2012 | 2013 | 2014 | 2015 |
| ʱ¼ä´úºÅt | 1 | 2 | 3 | 4 | 5 |
| ´¢Ðî´æ¿îy£¨Ç§ÒÚÔª£© | 5 | 6 | 7 | 8 | 10 |
£¨2£©ÓÃËùÇ󻨹鷽³ÌÔ¤²â¸ÃµØÇø2016Ä꣨t=6£©µÄÈËÃñ±Ò´¢Ðî´æ¿î£®
¸½£º»Ø¹é·½³Ì$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$ÖУ¬
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$£®