题目内容

6.集合{x|cos(πcosx)=0,x∈[0,π]}={$\frac{π}{3}$,$\frac{2π}{3}$}(用列举法表示)

分析 由已知得$πcosx=\frac{π}{2}$,或$πcosx=-\frac{π}{2}$,由此能求出结果.

解答 解:∵集合{x|cos(πcosx)=0,x∈[0,π]},
∴$πcosx=\frac{π}{2}$,或$πcosx=-\frac{π}{2}$,
∴cosx=$\frac{1}{2}$或cosx=-$\frac{1}{2}$,
∴x=$\frac{π}{3}$或x=$\frac{2π}{3}$,
∴集合{x|cos(πcosx)=0,x∈[0,π]}={$\frac{π}{3}$,$\frac{2π}{3}$}.
故答案为:{$\frac{π}{3}$,$\frac{2π}{3}$}.

点评 本题考查集合的表示,是基础题,解题时要认真审题,注意三角函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网