题目内容

14.已知实数x,y满足x2+y2≤1,3x+4y≤0,则$\frac{x-3}{x-y-2}$的取值范围是(  )
A.[1,4]B.[$\frac{19}{17}$,4]C.[1,$\frac{11}{3}$]D.[$\frac{19}{17}$,$\frac{11}{3}$]

分析 画出x2+y2≤1,3x+4y≤0,表示区域,化简目标函数,利用目标函数的几何意义,求解即可.

解答 解:实数x,y满足x2+y2≤1,3x+4y≤0,表示的区域如图:
则$\frac{x-3}{x-y-2}$=$\frac{1}{\frac{x-y-2}{x-3}}$=$\frac{1}{1-\frac{y-1}{x-3}}$,$\frac{y-1}{x-3}$表示阴影区域与(3,1)连线的斜率,$\left\{\begin{array}{l}{3x+4y=0}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$解得A($\frac{4}{5}$,-$\frac{3}{5}$).B(-$\frac{4}{5}$,$\frac{3}{5}$),kPB=$\frac{1-\frac{3}{5}}{3+\frac{4}{5}}$=$\frac{2}{19}$
则$\frac{x-3}{x-y-2}$=$\frac{-\frac{4}{5}-3}{-\frac{4}{5}-\frac{3}{5}-2}$=$\frac{19}{17}$,
令y-1=k(x-3),可得kx-y-3k+1=0,
由题意可得:$\frac{|1-3k|}{\sqrt{1+{k}^{2}}}=1$,可得k=0或k=$\frac{3}{4}$,
$\frac{y-1}{x-3}$∈[$\frac{2}{19}$,$\frac{3}{4}$],
1-$\frac{y-1}{x-3}$∈[$\frac{1}{4}$,$\frac{17}{19}$].
∴$\frac{x-3}{x-y-2}$∈[$\frac{19}{17}$,4].
故选:B.

点评 本题考查线性规划的应用,目标函数的几何意义的转化与求解是解题的关键,考查数形结合以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网