题目内容
3.化简、求值.(Ⅰ)$\sqrt{{a^{\frac{1}{4}}}•\sqrt{a•\sqrt{a}}}$
(Ⅱ)log23•log35•log54.
分析 (1)根据指数幂的运算性质可得,
(2)根据对数的运算性质可得.
解答 解:(Ⅰ)$\sqrt{{a^{\frac{1}{4}}}•\sqrt{a•\sqrt{a}}}={({a^{\frac{1}{4}}}{(a•{a^{\frac{1}{2}}})^{\frac{1}{2}}})^{\frac{1}{2}}}={a^{\frac{1}{2}}}=\sqrt{a}$;
(Ⅱ)${log_2}3•{log_3}5•{log_5}4=\frac{lg3}{lg2}•\frac{lg5}{lg3}•\frac{lg4}{lg5}=\frac{lg4}{lg2}=2$.
点评 本题考查了指数幂和对数的运算性质,属于基础题.
练习册系列答案
相关题目
13.
为了了解我校今年报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则报考飞行员的学生人数是( )
| A. | 50 | B. | 47 | C. | 48 | D. | 52 |
14.设a=0.5${\;}^{\frac{1}{2}}$,b=0.9${\;}^{\frac{1}{2}}$,c=log50.3,则a,b,c的大小关系是( )
| A. | a>c>b | B. | c>a>b | C. | a>b>c | D. | b>a>c |
11.设函数$f(x)=x-\frac{1}{x}$,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是 ( )
| A. | m<-1或0<m<1 | B. | 0<m<1 | C. | m<-1 | D. | -1<m<0 |
15.直线y=kx+1-2k与椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的位置关系为( )
| A. | 相交 | B. | 相切 | C. | 相离 | D. | 不确定 |
12.若$α∈(0,\frac{π}{2})$,若$cos(α+\frac{π}{6})=\frac{4}{5}$,则$sin(2α+\frac{π}{3})$的值为( )
| A. | $\frac{12}{25}$ | B. | $\frac{24}{25}$ | C. | $-\frac{24}{25}$ | D. | $-\frac{12}{25}$ |