题目内容

5.设函数f(x)=x3-4x-a,0<a<2.若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则(  )
A.x1<-2B.x2>0C.x3<1D.x3>2

分析 利用导数研究函数的单调性,利用导数求函数的极值,再根据f (x)的三个零点为x1,x2,x3,且x1<x2<x3,求得各个零点所在的区间,从而得出结论.

解答 解:∵函数f (x)=x3-4x+a,0<a<2,∴f′(x)=3x2-4.
令f′(x)=0,可得 x=±$\frac{2\sqrt{3}}{3}$.
∵当x<-$\frac{2\sqrt{3}}{3}$时,f′(x)>0;在(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)上,f′(x)<0;
在($\frac{2\sqrt{3}}{3}$,+∞)上,f′(x)>0.
故函数在(-∞,-$\frac{2\sqrt{3}}{3}$)上是增函数,在(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)上是减函数,在($\frac{2\sqrt{3}}{3}$,+∞)上是增函数.
故f(-$\frac{2\sqrt{3}}{3}$)是极大值,f($\frac{2\sqrt{3}}{3}$)是极小值.
再由f(x)的三个零点为x1,x2,x3,且x1<x2<x3,可得 x1<-$\frac{2\sqrt{3}}{3}$,-$\frac{2\sqrt{3}}{3}$<x2<$\frac{2\sqrt{3}}{3}$,x3>$\frac{2\sqrt{3}}{3}$.
根据f(0)=a>0,且f($\frac{2\sqrt{3}}{3}$)=a-$\frac{16\sqrt{3}}{9}$<0,可得 $\frac{2\sqrt{3}}{3}$>x2>0,
故选:B.

点评 本题主要考查函数的零点的定义,函数的零点与方程的根的关系,利用导数研究函数的单调性,利用导数求函数的极值,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网