题目内容
15.已知f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$,则f(k+1)等于( )| A. | f(k)+$\frac{1}{3(k+1)+1}$ | B. | f(k)+$\frac{2}{3k+2}$ | ||
| C. | f(k)+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$ | D. | f(k)+$\frac{1}{3k+4}$-$\frac{1}{k+1}$ |
分析 根据f(n)的解析式分别写出f(k)与f(k+1),即可得出结论.
解答 解:f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$,
∴f(k)=$\frac{1}{k+1}$+$\frac{1}{k+2}$+$\frac{1}{k+3}$+…+$\frac{1}{3k+1}$
f(k+1)=$\frac{1}{(k+1)+1}$+$\frac{1}{(k+1)+2}$+$\frac{1}{(k+1)+3}$+…+$\frac{1}{3(k+1)+1}$
=$\frac{1}{k+2}$+$\frac{1}{k+3}$+$\frac{1}{k+4}$+…+$\frac{1}{3k+4}$
=f(k)+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$.
故选:C.
点评 本题考查了根据函数解析式写出对应函数值的应用问题,是基础题目.
练习册系列答案
相关题目
5.设函数f(x)=x3-4x-a,0<a<2.若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则( )
| A. | x1<-2 | B. | x2>0 | C. | x3<1 | D. | x3>2 |
3.已知函数f(x)=ax3+bx2+cx,其导函数为f′(x)的部分值如表所示:
根据表中数据,回答下列问题:
(Ⅰ)实数c的值为6;当x=3时,f(x)取得极大值(将答案填写在横线上).
(Ⅱ)求实数a,b的值.
(Ⅲ)求f(x)的单调区间.
| x | -2 | 0 | 1 | 3 | 8 |
| f′(x) | -10 | 6 | 8 | 0 | -90 |
(Ⅰ)实数c的值为6;当x=3时,f(x)取得极大值(将答案填写在横线上).
(Ⅱ)求实数a,b的值.
(Ⅲ)求f(x)的单调区间.
10.已知函数f(x)=(3-a)x-2+a-2lnx(a∈R).
(Ⅰ)若a≤3,试讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)>x在(0,$\frac{1}{2}$)上恒成立,求实数a的取值范围.
(Ⅰ)若a≤3,试讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)>x在(0,$\frac{1}{2}$)上恒成立,求实数a的取值范围.
20.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在[a,b]上两个不同的零点,则称f(x)与g(x)的“关联区间”,若f(x)=$\frac{1}{3}{x^3}-{x^2}$-x与g(x)=2x+b的“关联区间”是[-3,0],则b的取值范围是( )
| A. | [-9,0] | B. | $[0,\frac{5}{3}]$ | C. | $[-9,\frac{5}{3}]$ | D. | $[0,\frac{5}{3})$ |