题目内容

15.已知f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$,则f(k+1)等于(  )
A.f(k)+$\frac{1}{3(k+1)+1}$B.f(k)+$\frac{2}{3k+2}$
C.f(k)+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$D.f(k)+$\frac{1}{3k+4}$-$\frac{1}{k+1}$

分析 根据f(n)的解析式分别写出f(k)与f(k+1),即可得出结论.

解答 解:f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$,
∴f(k)=$\frac{1}{k+1}$+$\frac{1}{k+2}$+$\frac{1}{k+3}$+…+$\frac{1}{3k+1}$
f(k+1)=$\frac{1}{(k+1)+1}$+$\frac{1}{(k+1)+2}$+$\frac{1}{(k+1)+3}$+…+$\frac{1}{3(k+1)+1}$
=$\frac{1}{k+2}$+$\frac{1}{k+3}$+$\frac{1}{k+4}$+…+$\frac{1}{3k+4}$
=f(k)+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$.
故选:C.

点评 本题考查了根据函数解析式写出对应函数值的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网