题目内容
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
B
[解析] 设φ(x)=f(x)-(2x+4),则φ′(x)=f′(x)-2>0,∴φ(x)在R上为增函数,又φ(-1)=f(-1)-(-2+4)=0,∴由φ(x)>0,可得x>-1.故f(x)>2x+4的解集为(-1,+∞).
练习册系列答案
相关题目
题目内容
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
B
[解析] 设φ(x)=f(x)-(2x+4),则φ′(x)=f′(x)-2>0,∴φ(x)在R上为增函数,又φ(-1)=f(-1)-(-2+4)=0,∴由φ(x)>0,可得x>-1.故f(x)>2x+4的解集为(-1,+∞).