题目内容
计算:
(1)0.027
-(-
)-2+256
-3-1+(
-1)0;
(2)lg5•lg8000+(lg2
)2.
(1)0.027
| 1 |
| 3 |
| 1 |
| 7 |
| 3 |
| 4 |
| 2 |
(2)lg5•lg8000+(lg2
| 3 |
考点:对数的运算性质,有理数指数幂的化简求值
专题:函数的性质及应用
分析:根据指数幂的运算性质和对数的运算性质计算即可
解答:
解:(1)0.027
-(-
)-2+256
-3-1+(
-1)0
=0.3-49+64-
+1
=
(2)lg5•lg8000+(lg2
)2
=lg5•(lg8+lg1000)+3lg22
=lg5(3lg2+3)+3lg22
=3lg2(lg5+lg2)+3lg5
=3lg2+3lg5
=3
| 1 |
| 3 |
| 1 |
| 7 |
| 3 |
| 4 |
| 2 |
=0.3-49+64-
| 1 |
| 3 |
=
| 479 |
| 30 |
(2)lg5•lg8000+(lg2
| 3 |
=lg5•(lg8+lg1000)+3lg22
=lg5(3lg2+3)+3lg22
=3lg2(lg5+lg2)+3lg5
=3lg2+3lg5
=3
点评:本题考查了指数幂的运算性质和对数的运算性质,属于基础题
练习册系列答案
相关题目
已知集合U={-1,0,1,2,3},∁UA={0,1,2},则集合A=( )
| A、{0,1,2} |
| B、{-1,0,1,2,3} |
| C、{-1,3} |
| D、{1,2,3} |