题目内容
填空:
(1)a=
,b=
,则
= .
(2)若x2+xy-2y2=0,则
= .
(1)a=
| 1 |
| 2 |
| 1 |
| 3 |
| 3a2-ab |
| 3a2+5ab-2b2 |
(2)若x2+xy-2y2=0,则
| x2+3xy+y2 |
| x2+y2 |
考点:根式与分数指数幂的互化及其化简运算
专题:计算题
分析:(1)化简可得原式=
,把a=
,b=
代入计算可得;(2)由x2+xy-2y2=0可得x=-2y或x=y,分别代入要求的式子化简可得.
| a |
| a+2b |
| 1 |
| 2 |
| 1 |
| 3 |
解答:
解:(1)∵
=
=
=
=
,
把a=
,b=
代入可得
=
=
,
(2)由x2+xy-2y2=0可得(x+2y)(x-y)=0,
∴x+2y=0或x-y=0,即x=-2y或x=y,
当x=-2y时,
=
=-
;
当x=y时,
=
=
故答案为:(1)
;(2)-
或
| 3a2-ab |
| 3a2+5ab-2b2 |
| a(3a-b) |
| 3a2-ab+6ab-2b2 |
=
| a(3a-b) |
| a(3a-b)+2b(3a-b) |
| a(3a-b) |
| (3a-b)(a+2b) |
| a |
| a+2b |
把a=
| 1 |
| 2 |
| 1 |
| 3 |
| 3a2-ab |
| 3a2+5ab-2b2 |
| a |
| a+2b |
| 3 |
| 5 |
(2)由x2+xy-2y2=0可得(x+2y)(x-y)=0,
∴x+2y=0或x-y=0,即x=-2y或x=y,
当x=-2y时,
| x2+3xy+y2 |
| x2+y2 |
| 4y2-6y2+y2 |
| 4y2+y2 |
| 1 |
| 5 |
当x=y时,
| x2+3xy+y2 |
| x2+y2 |
| y2+3y2+y2 |
| y2+y2 |
| 5 |
| 2 |
故答案为:(1)
| 3 |
| 5 |
| 1 |
| 5 |
| 5 |
| 2 |
点评:本题考查代数式的求值,利用运算性质化简是解决问题的关键,属基础题.
练习册系列答案
相关题目
已知x,y∈R,i为虚数单位,且x+yi=
,则x+y=( )
| 3+4i |
| 1+2i |
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a,b,c分别是内角A,B,C所对的边长,
=2
,
•
=0,
•
=-6,|
|=
.则内角B的大小为( )
| BD |
| DC |
| AB |
| AD |
| AB |
| BC |
| AD |
2
| ||
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知集合M={x|(x-1)2>1,x∈R},N={-1,0,1,2,3},则M∩N=( )
| A、{-1,3} |
| B、{-1,0,3} |
| C、{0,2,3} |
| D、{1,2,3} |