题目内容

13.已知数列{an}满足a1=a2=$\frac{1}{2}$,an+1=2an+an-1(n∈N*,n≥2),则$\sum_{i=2}^{2017}{\frac{1}{{{a_{i-1}}{a_{i+1}}}}}$的整数部分是(  )
A.0B.1C.2D.3

分析 由已知数列递推式可得$\frac{1}{{a}_{i-1}{a}_{i+1}}=\frac{1}{2{a}_{i}}(\frac{1}{{a}_{i-1}}-\frac{1}{{a}_{i+1}})=\frac{1}{2}(\frac{1}{{a}_{i-1}{a}_{i}}-\frac{1}{{a}_{i}{a}_{i+1}})$,再利用裂项相消法求和得答案.

解答 解:∵an+1=2an+an-1
∴2an=an+1-an-1,即$\frac{1}{{a}_{n-1}{a}_{n+1}}=\frac{1}{2{a}_{n}}(\frac{1}{{a}_{n-1}}-\frac{1}{{a}_{n+1}})$,(n∈N*,n≥2),
又a1=a2=$\frac{1}{2}$,
∴$\frac{1}{{a}_{i-1}{a}_{i+1}}=\frac{1}{2{a}_{i}}(\frac{1}{{a}_{i-1}}-\frac{1}{{a}_{i+1}})=\frac{1}{2}(\frac{1}{{a}_{i-1}{a}_{i}}-\frac{1}{{a}_{i}{a}_{i+1}})$(i∈N*,i≥2),
∴$\sum_{i=2}^{2017}{\frac{1}{{{a_{i-1}}{a_{i+1}}}}}$=$\frac{1}{2}(\frac{1}{{a}_{1}{a}_{2}}-\frac{1}{{a}_{2}{a}_{3}}+\frac{1}{{a}_{2}{a}_{3}}-\frac{1}{{a}_{3}{a}_{4}}+…+$$\frac{1}{{a}_{2015}{a}_{2016}}-\frac{1}{{a}_{2016}{a}_{2017}})$
=$\frac{1}{2}(\frac{1}{{a}_{1}{a}_{2}}-\frac{1}{{a}_{2016}{a}_{2017}})$=$\frac{1}{2}(4-\frac{1}{{a}_{2016}{a}_{2017}})=2-\frac{1}{2{a}_{2016}{a}_{2017}}$<2.
∵a1=a2=$\frac{1}{2}$,且an+1=2an+an-1
∴a2016>1,a2017>1,则$0<\frac{1}{{a}_{2016}{a}_{2017}}<1$,
∴1<$\sum_{i=2}^{2017}{\frac{1}{{{a_{i-1}}{a_{i+1}}}}}$<2.
∴$\sum_{i=2}^{2017}{\frac{1}{{{a_{i-1}}{a_{i+1}}}}}$的整数部分是1.
故选:B.

点评 本题考查了数列递推关系,训练了裂项求和方法,考查了推理能力与计算能力,是难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网