题目内容
已知等差数列{an}的前n项和为Sn,S7=49,a4和a8的等差中项为11.
(Ⅰ)求an及Sn;
(Ⅱ)证明:当n≥2时,有
+
+…+
<
.
(Ⅰ)求an及Sn;
(Ⅱ)证明:当n≥2时,有
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 7 |
| 4 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用等差数列的通项公式和前n项和公式列出方程组求出a1=1,d=2,由此能求出
an及Sn.
(Ⅱ)由Sn=n2知当n=2时,不等式成立;当n≥3时,
<
-
,由此利用裂项法能证明
+
+…+
<
.
an及Sn.
(Ⅱ)由Sn=n2知当n=2时,不等式成立;当n≥3时,
| 1 |
| n2 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 7 |
| 4 |
解答:
(Ⅰ)解:设等差数列{an}的公差为d,
∵S7=49,a4和a8的等差中项为11,
∴
,
解得a1=1,d=2,
∴an=2n-1,Sn=n2.
(Ⅱ)证明:由(Ⅰ)知Sn=n2,n∈N*,
①n=2时,
+
=1+
<
,∴原不等式也成立.
②当n≥3时,∵n2>(n-1)n,
∴
<
-
,
∴
+
+…+
=
+
+…+
<1+
+
+…+
=1+
+[(
-
)+…+(
-
)+(
-
)]
=1+
+(
-
)
=
-
<
.
∵S7=49,a4和a8的等差中项为11,
∴
|
解得a1=1,d=2,
∴an=2n-1,Sn=n2.
(Ⅱ)证明:由(Ⅰ)知Sn=n2,n∈N*,
①n=2时,
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| 4 |
| 7 |
| 4 |
②当n≥3时,∵n2>(n-1)n,
∴
| 1 |
| n2 |
| 1 |
| n-1 |
| 1 |
| n |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| n2 |
<1+
| 1 |
| 4 |
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
=1+
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-2 |
| 1 |
| n-1 |
| 1 |
| n-1 |
| 1 |
| n |
=1+
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| n |
=
| 7 |
| 4 |
| 1 |
| n |
| 7 |
| 4 |
点评:本题考查数列的通项公式和前n项和的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目