题目内容

已知角α终边上一点P(-
3
,1)
(1)求
cos(
π
2
+α)sin(-π-α)
cos(
11π
2
-α)sin(
2
+α)
的值
(2)写出角α的集合S.
分析:先求出点P(-
3
,1)到原点的距离,再由定义求出角α的三角函数值,
(1)先用诱导公式化简,再代入角α的三角函数值求值;
(2)写出角α的集合S,由于本题中的角是一个特殊角,故可以用终边相同的角将它表示出来.
解答:解:点P(-
3
,1)到原点的距离是2,由定义sinα=
1
2
,cosα=-
3
2

(1)
cos(
π
2
+α)sin(-π-α)
cos(
11π
2
-α)sin(
2
+α)
=
sinα×sinα
-sinα×cosα
=-
sinα
cosα
=
1
2
-
3
2
=-
3
3

(2)由sinα=
1
2
,cosα=-
3
2
知角α的终边与角
6
的终边相同,故α=2kπ+
6
,k∈z
故S={α|α=2kπ+
6
,k∈z}
点评:本题考查任意角三角函数的定义以及终边相同角的表示,利用诱导公式化简求值,求解本题的关键是熟练掌握定义与诱导公式,基础概念只有在掌握熟练得基础上才能正确运用它做题,不出错误.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网