题目内容

已知命题p:对任意的区间[1,2]内的实数x,x2-a≥0恒成立;命题q:方程x2+2ax+2-a=0有实根.若命题p,q都是真命题,求实数a的取值范围.
考点:命题的真假判断与应用
专题:函数的性质及应用,简易逻辑
分析:令f(x)=x2,利用等价转化思想可知a≤f(x)min,易求f(x)min=1,从而可求命题p为真命题时a的取值范围;同理可求得命题q是真命题时a的取值范围,利用p∧q为真,即可求得答案.
解答: 解:命题p:∵?x∈[1,2],x2-a≥0恒成立,令f(x)=x2
则a≤f(x)min
∵f(x)=x2在区间[1,2]上单调递增,
∴f(x)min=f(1)=1,
∴a≤1;
命题q:∵方程x2+2ax+2-a=0有实根,
∴△=(2a)2-4×1×(2-a)≥0,
整理得:a2+a-2≥0,
解得:a≥1或a≤-2;
∵命题p,q都是真命题,
∴a=1或a≤-2;
即实数a的取值范围为{a|a=1或a≤-2}.
点评:本题考查命题的真假判断与应用,考查函数恒成立问题,突出等价转化思想与运算求解能力的考查,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网