题目内容
8.已知平面直角坐标系内,B、C两点是x轴上的两动点,且|BC|=$\sqrt{2}$,A点是直线y=$\sqrt{2}$上的动点,则|AB|:|AC|的最大值与最小值的和为( )| A. | $\sqrt{5}$ | B. | $\sqrt{6}$ | C. | $\sqrt{7}$ | D. | 2$\sqrt{2}$ |
分析 利用两点间的距离公式,求出相应距离,即可得出结论.
解答 解:取C(0,0),B($\sqrt{2}$,0),A(x,$\sqrt{2}$),
∴|AB|2:|AC|2=$\frac{(x-\sqrt{2})^{2}+2}{{x}^{2}+2}$=1+$\frac{2-2\sqrt{2}x}{{x}^{2}+2}$,
设1-$\sqrt{2}$x=t,则|AB|2:|AC|2=1+$\frac{2t}{\frac{(1-t)^{2}}{2}+2}$=1+$\frac{4t}{{t}^{2}-2t+5}$,
t=0,|AB|:|AC|=1;
t≠0,|AB|2:|AC|2=1+$\frac{4}{t+\frac{5}{t}-2}$∈[$\frac{3-\sqrt{5}}{2}$,$\frac{3+\sqrt{5}}{2}$],
∴|AB|:|AC|的最大值与最小值的和为$\frac{\sqrt{5}+1}{2}+\frac{\sqrt{5}-1}{2}$=$\sqrt{5}$,
故选:A.
点评 本题考查两点间的距离公式,考查基本不等式的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
16.
矩形ABCD中,$AB=\sqrt{3}$,BC=1,将△ABC与△ADC沿AC所在的直线进行随意翻折,在翻折过程中直线AD与直线BC成的角范围(包含初始状态)为( )
| A. | $[0,\frac{π}{6}]$ | B. | $[0,\frac{π}{3}]$ | C. | $[0,\frac{π}{2}]$ | D. | $[0,\frac{2π}{3}]$ |
18.已知集合A={x|ax2+x-3=0},B={x|3≤x<7},若A∩B≠∅,则实数a的取值集合为( )
| A. | $[-\frac{1}{12},-\frac{4}{49})$ | B. | $[-\frac{1}{12},0]$ | C. | $(-\frac{4}{49},0]$ | D. | $[-\frac{4}{49},0]$ |