题目内容

14.已知正数数列{an}满足:a1=1,an+12-2an+1=an2+2an.数列{bn}满足bn•bn+1=3n且b2=9.
(I)求数列{an}、{bn}的通项公式;
(Ⅱ)已知cn=2nan+bn,求数列{cn}的前n项和Tn

分析 (I)化简${a}_{n+1}^{2}$-2an+1=${a}_{n}^{2}$+2an可得an+1-an=2,从而求数列{an}的通项公式;由bn•bn+1=3n且b2=9可得数列{bn}隔项成等比数列,公比都为3,从而分段写出bn=$\left\{\begin{array}{l}{\frac{1}{3}•{3}^{\frac{n-1}{2}},n为奇数}\\{9•{3}^{\frac{n}{2}-1},n为偶数}\end{array}\right.$;
(Ⅱ)记数列{2nan}的前n项和为Sn,利用错位相减法求其前n项和,记数列{bn}的前n项和为Fn,利用分类讨论与整体思想求其前n项和,从而解得.

解答 解:(I)∵${a}_{n+1}^{2}$-2an+1=${a}_{n}^{2}$+2an
∴(an+an+1)(an+1-an-2)=0,
∵an>0,∴an+1-an=2,
故数列{an}是以1为首项,2为公差的等差数列,
故an=1+2(n-1)=2n-1;
∵bn•bn+1=3n且b2=9,
∴b1=$\frac{1}{3}$,$\frac{{b}_{n+2}}{{b}_{n}}$=3,
故数列{bn}隔项成等比数列,公比为3,
故bn=$\left\{\begin{array}{l}{\frac{1}{3}•{3}^{\frac{n-1}{2}},n为奇数}\\{9•{3}^{\frac{n}{2}-1},n为偶数}\end{array}\right.$;
(Ⅱ)记数列{2nan}的前n项和为Sn
Sn=1•2+3•22+5•23+…+(2n-1)•2n
2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
两式作差可得,
Sn=-2-2•22-2•23-2•24-…-2•2n+(2n-1)•2n+1
故Sn=-2-$\frac{8(1-{2}^{n-1})}{1-2}$+(2n-1)•2n+1=(2n-3)•2n+1+6;
记数列{bn}的前n项和为Fn
当n为偶数时,
Fn=(b1+b2)+(b3+b4)+…+(bn-1+bn
=($\frac{1}{3}$+9)•$\frac{1-{3}^{\frac{n}{2}}}{1-3}$=$\frac{14}{3}$•(${3}^{\frac{n}{2}}$-1);
当n为奇数时,
Fn=Fn-1+bn=$\frac{14}{3}$•(${3}^{\frac{n-1}{2}}$-1)+$\frac{1}{3}$•${3}^{\frac{n-1}{2}}$=5•${3}^{\frac{n-1}{2}}$-$\frac{14}{3}$;
而Tn=Sn+Fn
故Tn=$\left\{\begin{array}{l}{(2n-3)•{2}^{n+1}+6+5•{3}^{\frac{n-1}{2}}-\frac{14}{3},n为奇数}\\{(2n-3)•{2}^{n+1}+6+\frac{14}{3}({3}^{\frac{n}{2}}-1),n为偶数}\end{array}\right.$.

点评 本题考查了分类讨论的思想方法的应用及错位相减法的应用,同时考查了等比数列与等差数列的判断与性质的应用,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网