题目内容

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足($\overrightarrow{a}$+2$\overrightarrow{b}$)•(5$\overrightarrow{a}$-4$\overrightarrow{b}$)=0,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ为(  )
A.$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 根据平面向量数量积的定义与运算,求出$\overrightarrow{a}$与$\overrightarrow{b}$夹角θ的余弦值,从而求出θ的值.

解答 解:因为|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,且($\overrightarrow{a}$+2$\overrightarrow{b}$)•(5$\overrightarrow{a}$-4$\overrightarrow{b}$)=0,
所以5${\overrightarrow{a}}^{2}$+6$\overrightarrow{a}$•$\overrightarrow{b}$-8${\overrightarrow{b}}^{2}$=0,
即5×12+6×1×1×cosθ-8×12=0,
解得cosθ=$\frac{1}{2}$;
又θ∈[0,π],
所以θ=$\frac{π}{3}$.
故选:C.

点评 本题考查了利用平面向量的数量积求夹角的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网