题目内容
3.某班小张等4位同学报名参加A、B、C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有( )| A. | 27种 | B. | 36种 | C. | 54种 | D. | 81种 |
分析 根据题意,分析可得除小张外,每位同学都有3种选择,小张只有2种选择,由分步计数原理计算可得答案.
解答 解:根据题意,分析可得:除小张外,每位同学都可以报A、B、C三个课外活动小组中任意一个,都有3种选择,
小张不能报A小组,只有2种选择,
所以不同的报名方法有3×3×3×2=54(种).
答案:C.
点评 本题考查分步计数原理的应用,注意本题不是排列问题.
练习册系列答案
相关题目
11.
某学校研究性学习小组对该校高二(1)班n名学生视力情况进行调查,得到如图的频率分布直方图,已知视力在4.0~4.4范围内的学生人数为24人,视力在5.0~5.2范围内为正常视力,视力在3.8~4.0范围内为严重近视.
(1)求a,n的值;
(2)学习小组成员发现,学习成绩突出的学生,迫害视的比较多,为了研究学生的视力与学习成绩是否有关系,对班级名次在前10名和后10名的学生进行了调查,得到如表中数据,根据表中的数据,能否在犯错误的概率不超过0.10的前提下认为视力与学习成绩有关系?
(3)若先按照分层抽样在正常视力和严重近视的学生中抽取6人进一步调查他们用眼习惯,再从这6人中随机抽取2人进行保护视力重要性的宣传,求视力正常和严重近视各1人的概率.
附:
(1)求a,n的值;
(2)学习小组成员发现,学习成绩突出的学生,迫害视的比较多,为了研究学生的视力与学习成绩是否有关系,对班级名次在前10名和后10名的学生进行了调查,得到如表中数据,根据表中的数据,能否在犯错误的概率不超过0.10的前提下认为视力与学习成绩有关系?
(3)若先按照分层抽样在正常视力和严重近视的学生中抽取6人进一步调查他们用眼习惯,再从这6人中随机抽取2人进行保护视力重要性的宣传,求视力正常和严重近视各1人的概率.
| 是否近视/年级名次 | 前10名 | 后10名 |
| 近视 | 9 | 7 |
| 不近视 | 1 | 3 |
| P(k2≥k | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
12.已知集合A={x∈z|0≤x<3},B={x∈R|x2≤9},则A∩B=( )
| A. | {1,2} | B. | {0,1,2} | C. | {x|0≤x<3} | D. | {x|0≤x≤3} |
18.设(2-x)10=a0+a1x+a2x2+…+a10x10,则a1+a2+…+a10=( )
| A. | -1023 | B. | -1024 | C. | 1025 | D. | -1025 |
8.已知样本2,3,4,5,a的平均数是b,且点P(a-b,4b)在直线2x+y-8=0上,则该样本的标准差是( )
| A. | 2 | B. | $\sqrt{2}$ | C. | 10 | D. | $\sqrt{10}$ |
12.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{a}•\overrightarrow{b}$=10,|$\overrightarrow{a}+\overrightarrow{b}$|=5$\sqrt{2}$,则|$\overrightarrow{b}$|=( )
| A. | $\sqrt{5}$ | B. | $\sqrt{10}$ | C. | 5 | D. | 25 |
13.已知i为虚数单位,复数z满足z-zi=1+2i,则z的共轭复数$\overline z$所对应的点位于复平面内的( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |