题目内容
16.已知F1,F2分别是双曲线x2-$\frac{{y}^{2}}{24}$的=1左、右焦点,P是双曲线上的一点,若|PF1|,|PF2|,|F1F2|构成公差为正数的等差数列,则△F1PF2的面积为( )| A. | 24 | B. | 22 | C. | 18 | D. | 12 |
分析 本题首先要根据双曲线的定义写出|PF1|,|PF2|所满足的条件,再根据|PF1|,|PF2|,|F1F2|依次成公差为正数的等差数列写出另一个等式,两式组成方程组,解出三角形三边的长度,问题转化为已知三边求面积的问题.
解答 解:∵|PF1|,|PF2|,|F1F2|依次成公差为正数的等差数列,
∴2|PF2|=|PF1|+|F1F2|,
∵|PF2|-|PF1|=2a,
∴|PF2|=2(c-a)=8,
|PF1|=2c-4a=6,
|F1F2|=10,
∴PF1⊥PF2,
∴△F1PF2的面积=$\frac{1}{2}×6×8$=24,
故选:A.
点评 本题是一个大型综合题,解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.
练习册系列答案
相关题目
8.方程y=$\sqrt{36-{x}^{2}}$表示的曲线是( )
| A. | 一个圆 | B. | 两条射线 | C. | 半个圆 | D. | 一条射线 |
5.若5555=8k+r(k,r为自然数),则r的最小值为( )
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |