题目内容
5.已知函数f(x)=log2x,x∈[1,8],则不等式1≤f(x)≤2成立的概率是( )| A. | $\frac{1}{7}$ | B. | $\frac{2}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{4}{7}$ |
分析 由题意,本题是几何概型的考查,只要求出区间的长度,利用公式解答即可.
解答 解:区间[1,8]的长度为7,满足不等式1≤f(x)≤2即不等式1≤log2x≤2,解答2≤x≤4,对应区间[2,4]长度为2,由几何概型公式可得使不等式1≤f(x)≤2成立的概率是$\frac{2}{7}$,
故选B.
点评 本题考查了几何概型的概率求法,关键是明确结合测度,本题利用区间长度的比求几何概型的概率.
练习册系列答案
相关题目
16.倾斜角为$\frac{π}{3}$的直线l过抛物线y2=ax(a>0)的焦点F,且与抛物线交于点A、B,l交抛物线的准线于点C(B在A、C之间),若$|{BC}|=\frac{8}{3}$,则a=( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
20.已知随机变量ξ的概率分布列为:
则Eξ=1,Dξ=$\frac{1}{2}$.
| ξ | 0 | 1 | 2 |
| P | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{4}$ |
10.已知双曲线过点(2,3),渐进线方程为y=±$\sqrt{3}$x,则双曲线的标准方程是( )
| A. | $\frac{{7{x^2}}}{16}-\frac{y^2}{12}=1$ | B. | $\frac{y^2}{3}-\frac{x^2}{2}=1$ | C. | ${x^2}-\frac{y^2}{3}=1$ | D. | $\frac{{3{y^2}}}{23}-\frac{x^2}{23}=1$ |
17.5个车位分别停放了A,B,C,D,E,5辆不同的车,现将所有车开出后再按A,B,C,D,E的次序停入这5个车位,则在A车停入了B车原来的位置的条件下,停放结束后恰有1辆车停在原来位置上的概率是( )
| A. | $\frac{3}{8}$ | B. | $\frac{3}{40}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{12}$ |
14.现阶段全国多地空气质量指数“爆表”.为探究车流量与PM2.5浓度是否相关,现对北方某中心城市的车流量最大的地区进行检测,现采集到12月某天7个不同时段车流量与PM2.5浓度的数据,如下表:
(1)根据上表中的数据,用最小二乘法求出y关于x的线性回归方程;
(2)规定当PM2.5浓度平均值在(0,50],空气质量等级为优;当PM2.5浓度平均值在(50,100],空气质量等级为良;为使该城市空气质量为优和良,利用该回归方程,预测要将车流量控制在每小时多少万辆内(结果以万辆做单位,保留整数).
附:回归直线方程:$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y=\widehatb\overline x$.
| 车流量x(万辆/小时) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| PM2.5浓度y(微克/立方米) | 30 | 36 | 38 | 40 | 42 | 44 | 50 |
(2)规定当PM2.5浓度平均值在(0,50],空气质量等级为优;当PM2.5浓度平均值在(50,100],空气质量等级为良;为使该城市空气质量为优和良,利用该回归方程,预测要将车流量控制在每小时多少万辆内(结果以万辆做单位,保留整数).
附:回归直线方程:$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y=\widehatb\overline x$.
15.某食品厂只做了3种与“福”字有关的精美卡片,分别是“富强福”、“和谐福”、“友善福”、每袋食品随机装入一张卡片,若只有集齐3种卡片才可获奖,则购买该食品4袋,获奖的概率为( )
| A. | $\frac{3}{16}$ | B. | $\frac{4}{9}$ | C. | $\frac{3}{8}$ | D. | $\frac{8}{9}$ |