题目内容

5.已知函数f(x)=log2x,x∈[1,8],则不等式1≤f(x)≤2成立的概率是(  )
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

分析 由题意,本题是几何概型的考查,只要求出区间的长度,利用公式解答即可.

解答 解:区间[1,8]的长度为7,满足不等式1≤f(x)≤2即不等式1≤log2x≤2,解答2≤x≤4,对应区间[2,4]长度为2,由几何概型公式可得使不等式1≤f(x)≤2成立的概率是$\frac{2}{7}$,
故选B.

点评 本题考查了几何概型的概率求法,关键是明确结合测度,本题利用区间长度的比求几何概型的概率.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网