题目内容

20.y=tan(πx+$\frac{π}{4}$)的对称中心为(  )
A.($\frac{(2k-1)π}{4}$,0),k∈ZB.$(\frac{2k-1}{2},0),k∈Z$C.($\frac{2k-1}{4}$,0),k∈ZD.($\frac{(2k-1)π}{2}$,0),k∈Z

分析 根据正切函数的对称性进行求解即可.

解答 解:由πx+$\frac{π}{4}$=$\frac{kπ}{2}$得x=$\frac{2k-1}{4}$,
即函数的对称中心为($\frac{2k-1}{4}$,0),k∈Z
故选C.

点评 本题主要考查正切函数的图象和性质,利用正切函数的对称性是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网