题目内容

13.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_3}x,x>0\end{array}\right.$,则$f[f(\frac{1}{27})]$的值为(  )
A.$\frac{1}{8}$B.8C.-8D.$-\frac{1}{8}$

分析 直接利用分段函数求解函数值即可.

解答 解:函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_3}x,x>0\end{array}\right.$,则$f[f(\frac{1}{27})]$=f(${log}_{3}\frac{1}{27}$)=f(-3)=2-3=$\frac{1}{8}$.
故选:A.

点评 本题考查函数值的求法,分段函数的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网