题目内容
3.底面是正三角形且侧棱和底面垂直的三棱柱ABC-A1B1C1的侧棱长为3,底面边长为1,沿侧面从A点经过棱BB1上的M点再经过棱CC1上的N点到A1点.当所经路径AM-MN-NA1最短时,AM与A1N所成的角的余弦值为$\frac{1}{4}$.分析 过A作AP∥A1N交C1C于P,则AM与AP所夹锐角(或直角),就是所求的角,沿侧棱AA1把三棱柱ABC-A1B1C1剪开展开,当路径AM-MN-NA1最短时,最短路径是AA1,由此能求出结果.
解答 解:如图5(甲),过A作AP∥A1N交C1C于P,![]()
则AM与AP所夹锐角(或直角),就是所求的角,
沿侧棱AA1把三棱柱ABC-A1B1C1剪开展开,
如图5(乙),当路径AM-MN-NA1最短时,
M、N在线段AA1上,最短路径是AA1,
由此可知,BM=1,CN=2,
故AM=AP=$\sqrt{2}$,MP=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$.
∴($\sqrt{5}$)2=($\sqrt{2}$)2+($\sqrt{2}$)2-$2\sqrt{2}•\sqrt{2}•cos∠MAP•cos∠MAP$=-$\frac{1}{4}$,
故AM与A1N所成的角的余弦值为$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.
点评 本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
13.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_3}x,x>0\end{array}\right.$,则$f[f(\frac{1}{27})]$的值为( )
| A. | $\frac{1}{8}$ | B. | 8 | C. | -8 | D. | $-\frac{1}{8}$ |
14.已知A(2,0)、B(0,2),从点P(1,0)射出的光线经直线AB反向后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是( )
| A. | 3 | B. | 2$\sqrt{2}$ | C. | $\sqrt{10}$ | D. | 2$\sqrt{3}$ |
8.sin(-1665°)的值是( )
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $-\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{1}{2}$ |
15.已知数列$\frac{\sqrt{3}}{2}$、$\frac{\sqrt{5}}{4}$、$\frac{\sqrt{7}}{6}$、$\frac{3}{a-b}$、$\frac{\sqrt{a+b}}{10}$…根据前三项给出的规律,则实数对(a,b)可能是( )
| A. | (10,2) | B. | (10,-2) | C. | ($\frac{19}{2}$,$\frac{3}{2}$) | D. | ($\frac{19}{2}$,-$\frac{3}{2}$) |