题目内容
5.在△ABC中,B=$\frac{π}{3}$,AC=$\sqrt{3}$,求AB+BC的最大值并判断取得最大值时△ABC的形状.分析 根据正弦定理可得AB=2sinC,BC=2sinA,从而利用三角函数恒等变换的应用可求AB+BC=$2\sqrt{3}sin(C+\frac{π}{6})$,利用正弦函数的图象和性质即可得解.
解答 (本题满分为12分)
解:∵B=$\frac{π}{3}$,AC=$\sqrt{3}$,
∴在△ABC中,根据$\frac{AB}{sinC}$=$\frac{AC}{sinB}$=$\frac{BC}{sinA}$,得AB=$\frac{AC}{sinB}$•sinC=$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$sinC=2sinC,
∴同理BC=2sinA,
∴AB+BC=2sinC+2sinA,…(4分)
=2sinC+2sin($\frac{2}{3}$π-C)
=$2\sqrt{3}sin(C+\frac{π}{6})$,…(8分)
当C=$\frac{π}{3}$,可得AB+BC的最大值为$2\sqrt{3}$,…(10分)
取最大值时,因而△ABC是等边三角形.…(12分)
点评 本题主要考查了正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想的应用,属于中档题.
练习册系列答案
相关题目
16.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,则z=4x+y的最大值为( )
| A. | -6 | B. | 10 | C. | 12 | D. | 15 |
10.定义在R上的函数f(x)满足f(x+2)=f(x),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2{x}^{2},0≤x<1}\\{-{2}^{1-|x-\frac{3}{2}|},1≤x<2}\end{array}\right.$,函数g(x)=(2x-x2)ex+m,若?x1∈[-4,-2],?x2∈[-1,2],使得不等式f(x1)-g(x2)≥0成立,则实数m的取值范围是( )
| A. | (-∞,-2] | B. | (-∞,$\frac{3}{e}$+2] | C. | [$\frac{3}{e}$+2,+∞) | D. | (-∞,$\frac{3}{e}$-2] |