题目内容
16.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,则z=4x+y的最大值为( )| A. | -6 | B. | 10 | C. | 12 | D. | 15 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.
解答
解:作出不等式组$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$对应的平面区域如图:(阴影部分)
由z=4x+y得y=-4x+z,
平移直线y=-4x+z,
由图象可知当直线y=-4x+z经过点A时,直线y=-4x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=4}\\{x+2y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=-1}\end{array}\right.$,即A(4,-1),
代入目标函数z=4x+y得z=4×4-1=15.
即目标函数z=4x+y的最大值为15.
故选:D.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
7.某医院对治疗支气管肺炎的两种方案A,B进行比较研究,将志愿者分为两组,分别采用方案A和方案B进行治疗,统计结果如下:
(Ⅰ)完成上述列联表,并比较两种治疗方案有效的频率;
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
| 有效 | 无效 | 合计 | |
| 使用方案A组 | 96 | 120 | |
| 使用方案B组 | 72 | ||
| 合计 | 32 |
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
8.已知AC⊥BC,AC=BC,D满足$\overrightarrow{CD}$=t$\overrightarrow{CA}$+(1-t)$\overrightarrow{CB}$,若∠ACD=60°,则t的值为( )
| A. | $\frac{\sqrt{3}-1}{2}$ | B. | $\sqrt{3}$-$\sqrt{2}$ | C. | $\sqrt{2}$-1 | D. | $\frac{\sqrt{3}+1}{2}$ |
6.
在底和高等长度的锐角三角形中有一个内接矩形,矩形的一边在三角形的底边上,如图,在三角形内取一点,则该点落入矩形内的最大概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |