题目内容
数列的前项和为,,且,则 .
设各项均为正数的数列的前项和为,满足且恰好是等比数列的前三项.
(Ⅰ)求数列、的通项公式;
(Ⅱ)记数列的前项和为,若对任意的, 恒成立,求实数的取值范围.
设各项均为正数的数列的前项和为,满足且构成等比数列.
(1) 证明:;
(2) 求数列的通项公式;
(3) 证明:对一切正整数,有.
各项均为正数的等比数列,,,单调增数列的前项和为,,且().
(Ⅱ)令(),求使得的所有的值,并说明理由.
(Ⅲ) 证明中任意三项不可能构成等差数列.
(12分)设数列的前项和为,,且对任意正整数,点在直线上.
(Ⅰ) 求数列的通项公式;
(Ⅱ)是否存在实数,使得数列为等差数列?若存在,求出的值;若不存在,则说明理由.