题目内容
已知公差不为0的等差数列{an}的首项a1=3,设数列的前项和为Sn,且
,
,
成等比数列.
(Ⅰ)求数列{an}的通项公式及Sn;
(II)求An=
+
+
+…+
.
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a4 |
(Ⅰ)求数列{an}的通项公式及Sn;
(II)求An=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
分析:(Ⅰ)依题意可求得等差数列{an}的公差,从而可数列{an}的通项公式及Sn;
(II)由(Ⅰ)里用裂项法可求得
,累加即可求得An.
(II)由(Ⅰ)里用裂项法可求得
| 1 |
| Sn |
解答:解:(Ⅰ)由a1=3且
、
、
成等比数列得(
)2=
×
,
即(
)2=
×
,
解得d=3.
∴数列{an}的通项公式an=3n,
∴Sn=
.
(2)∵
=
(
-
),
∴An=
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a4 |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| a4 |
即(
| 1 |
| 3+d |
| 1 |
| 3 |
| 1 |
| 3+3d |
解得d=3.
∴数列{an}的通项公式an=3n,
∴Sn=
| 3n(n+1) |
| 2 |
(2)∵
| 1 |
| Sn |
| 2 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
∴An=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 2 |
| 3 |
| 1 |
| n+1 |
=
| 2n |
| 3n+3 |
点评:本题考查等比数列的性质与裂项法求和,求得an的通项公式是关键,考查分析与转化的解决问题的能力,属于中档题.
练习册系列答案
相关题目