题目内容
已知函数.
(Ⅰ)若函数在区间为(0,1)上单调递减,求的取值范围;
(Ⅱ)若取(I)中的最小值,且,求证:.
设函数 .
(1)用含的式子表示;
(2),其图象上任意—点处切线的斜率恒成 立,求实数的取值范围;
(3)若试求在区间上的最大值.
若,且,则的值为( )
A.1 B. C. D.
在平面直角坐标系中,双曲线与圆相切,,若圆上存在一点满足,则点到轴的距离为( )
A. B. C. D.
在中,“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
在直角坐标系xOy中,曲线C的参数方程为为参数),若以原点为极点,x轴非负半轴为极轴建立极坐标系,直线的极坐标方程为.
(Ⅰ)已知点的极坐标为,写出点关于直线对称点的直角坐标;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线的距离的最小值与最大值.
如图,小圆圈表示网络结点,结点之间的连线表示它们之间有网线连接,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B发送信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为( )
A.19 B.20 C.24 D. 26
在中,平分的内角且与对边交于点,则,将命题类比空间:在三棱锥中,平面平分二面角且与对棱交于点,则可得到的正确命题结论为__________.
在中,角所对的边分别为,且满足.
(1)求的值.
(2)若成等差数列,且公差大于0,求的值.